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Particle Distribution in a Microporous Material

Introduction

lon exchange equilibria and the distribution of ions, atoms,
or molecules in zeolites and in other microporous materials have
been investigated both by means of experimental and theoretical

methods, some

refs 1-15. However, the handling of many relevant cases
remains unsatisfactory, and it is desirable to develop a well-
defined and simple system that can be used as an “ideal case 0
reference system”. We found that the independent particles in 0 1 1
a box can be used for this purpose. Its consequences have not
been explored so far. We do it now because this well-defined 345678
system leads to considerable insight and improves our under-
standing of microporous material. We consider a crystal
consisting of a finite number of unit cells or boxes each of which
can be filled with a specific number of particles. All empty sites
in a box have equal probability to be occupied, independent of 01
the number of particles present, as long as sites are available.
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Equilibria in zeolites and other microporous materials are discussed. We presedepandent particles in

a boxapproach, which leads to a thermodynamic description of internal occupation equilibria of the type
ZXi—1 + ZXi1 == 2ZX;, where Z denotes the framework of the material and X the particles that can interchange
places. The independent particles in a box are defined by considering a crystal consisting of a finite number
of unit cells or boxes each of which can be filled with a specific number of particles. All empty sites in a box
have equal probability to be occupied, independent of the number of particles present, as long as sites are
available. Each time a patrticle does fall in a box, the probability for a next one to hit this box is reduced by

1 divided by the number of sites available in an empty box. Hence, as soon as a box is filled, the probability
for a particle to hit it becomes zero. The maximum number of particles in the system is equal to the maximum
number of sites in a box multiplied by the number of boxes. This allows equilibrium constants and the decrease
of entropy as a function of the equivalent fraction of exchanging species to be calculated. We show that the
plot of the logarithm of the equilibrium constant versus the equivalent fraction of exchanging species is not
linear and that the nonlinearity is caused by the decrease of entropy. On the basis of this observation, we
suggest the independent particles in a box to be used as a reference for “ideal behavior” and to serve as a
reference for determining activity coefficients. The generalization of the theory leads to the independent
particles in boxes with different sites. It is discussed in detail with regard to two nonequivalent sites
corresponding to the internal equilibria ZXX2,, == ZX1,11X2,,-1 in which X1 and X2 are the same species

but occupy site 1 and 2, respectively, of a box. We show the solution of this problem and explain the distribution
of the particles among the different sites as a function of the average exchange degree.

aspects of which are well understood; see, e.g.,

0.4+

Each time a particle does fall in a box, the probability for a ro—

next one to hit this box is reduced by 1 divided by the number Figure 1. Particle distributiort of a system consisting of equivalent

of sites available in an empty box. Hence, as soon as a box isboxes, each of which cqntains 12 equivalent sites, as a functi_on of the
filled, the probability for a particle to hit it becomes zero. The average number of particles in a boxThe line marked as 0 indicates

maximum number of particles in the system is equal to the
maximum number of sites in a box multiplied by the number

the relative number of empty boxes; 1 indicates the relative number of
boxes containing one particle and so on.

of boxes. In a zeolite, this corresponds to the situation in which another monovalent cation Msuch as K, Ag", or others,

no coordination site is occupied with preference. An example
for which this description provides a good understanding is a
zeolite A in which some of the Nahave been exchanged by

leading to Na1,-xM™T,JAl 1,Si1,04¢] despite the fact that site
preferences have been reportéd® We have recently used it

to study the dependency of the electronic spectra of activated
AgT12-xM Al 15Si1204g] on the exchange degree® Figure 1
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the unit cells as a function of the average exchange dagree
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which is equal tox. The distribution shows, e.g., that the share particlesAn andp;—1An is the probability that boxes containing
of unit cells with one Ad increases until an average content r — 1 particles are transformed into boxes contaimid them.
of one Ag' per unit cell is reached. With an average exchange If An = 1 particles are added to the sample, this can be
degree as low as 1.5 Agper unit cell, the share of cells with  expressed as follows:
only one Ag is substantially smaller already and roughly
corresponds to the sum of the shares with more than orie Ag 0 x 1=, —1) 1 )
In the present work, we first explain the independent particles ' box NpoxN n
in a box case. We show that the results lead to a thermodynamic
description of the internal occupation equilibrium 1, for which or
the equilibrium constants and the change of entropy are

uc

calculated. Mooy — T f g
pp=—%—— for n<n, N, and ny,=r=1
Z+ 27X, = 27X " NNy = N pox e box
8
ZX + ZX;=2ZX, (8)
7X. + 7X. = 27X Using AN; = N;i — N;i—1, egs 4 and 5 become after some
2 4 3 rearrangement:
. . ANO
ZX, o, ZX, =27, 1) An - PoNo )
We compare the results with the so-called Kielland plhich AN,
has been generally accepted to be useful for discussing activities An PNy =N, for ng,=r=1 (10)

in ion exchange equilibria in zeolites, clay minerals, and other

materials; see, e.g., refs-B. We propose to substitute the We express the initial conditions, when all boxes are empty,
Kielland plot by the independent particles in a box equation as as a function of the number of particles the number of

a reference for ideal behavior. We then introduce the generaliza-positions in a boxiyey, and the number of boxes,..

tion of the theory for boxes with unequal sites and we illustrate

how the fast increasing complexity of the system can be handled No(0,Npow Ny = Nye (11)
for boxes with two different sites, corresponding to the internal

equilibrium 2 in which X1 and X2 are the same species but N.(OnpowN, =0 for ng,=r=1 (12)
coordinated to the sites 1 and 2, respectively.

With these initial conditions, the eqs 9 and 10 can be solved
explicitly. The solution is given in eq 13. Its derivation is given
in the appendix.

ZX1,;X2,, = ZX1 3 1X2,5 4 o)

Independent Particles in Boxes

We describe microcrystals, each consistind\gf unit cells N, (NN =
or boxes, each of which can be filled with uprigy particles. Nl N
All empty sites in a box have equal probability to be occupied, box ' (N Ny — N)™ 7,
independent of the numbarof particles present. Its maximum (Mpox = DI (o N9 ™
numbernmax in @ crystal is given by r=0,1, ..My (13)

n Nyc (©)

max ~ Mox This ends the mathematical part of the independent particle

case. Before exploring its meaning, we should add that eq 13
differs from the hypergeometric distributi®hsignificantly in
that it allows us to calculate equilibrium constants directly while
the hypergeometric distribution does not.

We first investigate a porous nanocrystal consisting of a
certain number of equivalent boxes each of which begys—=
» 12 equivalent places. We would like to know the distribution
0,(r) = N : 4) of the particles among the boxes when filling the nanocrystal

ue by throwing in one particle after the other. Figure 1 shows the

relative number of boxes containing 0,1,2, ...,12 particles, which
is the particle distributio®, as a function of the reduced particle
pumberT = n/Nyc. The reduced particle numbercorresponds
to the average number of particles in a box. An example for
which these results provide a good understanding of experi-
mental observations is a zeolite A in which some of the sodium
cations have been exchanged by another monovalent cation M

Each time a particle falls in a box the probability for a next
one to hit that box reduces by, hence, once a box is filled,
the probability for a next particle to hit it becomes zero. This is
how we define the independent particles in a box. The reduced
number6(r) of particles in the system is defined as

whereN;; is the number of boxes containimgparticles in a
crystal filled withi of them. We assume that a totalroparticles

are already present in our sample and that we add an additiona
numberAn of them in a tryi. This means that the number of
empty boxesNp;—1 reduces toNp; and the number of boxes
containingr particlesN;;—; changes to\;

Noi = Ngj—1 — PoANNy;_; (5) such as K, Ag™, or others, leading to Na,—xM "[Al 15Si1204g].
' ' ' It has recently been used by us to study the dependency of the
N =N+ p AN _3; 3 — (BANN,;_; (6) electronic spectra of activated silver-containing zeolite A on

the exchange degree!® In this study, each pseudo-unit cell
In these equationgAn is the probability that boxes contain-  was identified as a box withpox = 12 equivalent sites. The
ing r particles vanish by receiving an additional number of size of the individual zeolite crystals was not important because
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TABLE 1: Equilibrium Constants K; Calculated from Eq 23 and Entropy Change in J/(K mol)

r 1 2 3 4 5 6 7 8 9 10 11 12
Ky 1.0 0.458 0.278 0.178 0.133 0.097 0.071 0.052 0.037 0.025 0.015 PGIVE:
AS 0.0 —-6.49 -10.6 —13.9 —16.8 —19.4 —21.9 —24.6 —27.4 —30.7 —34.8 —41.3

all boxes were assumed to be equal. The results shown in Figure

1 can therefore be interpreted as distribution of the Ams in 2+ ZX;=2ZX KB,

the zeolite A as a function of the exchange degrewhich ZX + ZX;=2ZX, KB,
takes the same values msWe now investigate the thermody-

namic equilibrium of a system consisting af,x + 1 species ZX, + ZX, = 2ZX; KBg
ZXp, 0 =0,1,2, ....Nbox. . :

Z+X=ZX Kl anbox_2 + anboxz ZZanox_l KBnbox_l (20)

ZX + X=2ZX, K, The equilibrium constants KRan be calculated because the
ZX. + X = 7X. K number of boxes containingparticles are directly proportional
S to the concentration of the ZXspecies. Thus we obtain
oo N, (n,ny. N, )]?
anbox_l + X = anbox Knbox (14) KBT = [ r( oo UC)] (21)
[Nr—o-l(nvnbox’NU()][Nr—l(n1nbox’Nu9]

The equilibrium constantl, are given by _ ) S
Inserting the solution foN;(n,NyexNuc) given in eq 13 leads

[ZX,] afterlsome rearrangement to the following astonishingly simple
K, XIZX ] r=1,2, ..y (15) result:
. . . _r+1 nbox_r+l
The concentrations of the individual species [fXas a KB, = p n_—r (22)
function of the concentration of free X can be expressed as box
follows:2!
and therefore to
P
[X]pHKj K. =K r41(Mox— 1]
j=0 r+1 7 N r . —r (23)
[ZX ] =—"A (16) box
box |
SIx1TIx From eq 16 it is obvious that multiplying eakh by the same
i=0 =0 constant does not affect the concentrations JZXf the
individual species. We can therefore chod§e= 1 without
where Ko is equal to 1 by definition andd is the total  |oss of generality. This means that not only the equilibrium
concentration of the ZXspecies. constants KB can be calculated from the solution of the
independent particles in a box but, more importantly, &so
Thox Using egs 1618 and 23 it is possible to calculate the
A= Z[pr] (17) concentrations [Z)]. We illustrate this fomyex = 12 in Table
p=0

1, where the equilibrium constants and the entropy change
. ) calculated from eqgs 23 and 25 are reported, and in Figure 2,
The total concentration of bound X species can be expressedyhere we show the concentrations of the individual species ZX
as as a function of the free X concentration, normalized by the
maximum of [X}o. The progress of the concentrations of the
ZX, species with large illustrates the constraints imposed on
X0t = ZP[ZXp] (18) the system by the decreasing entropy with increagingince
P=0 there is no enthalpy change involved, the change of the entropy
AS can be expressed by eq 25.

Npox

The equilibrium 14 can be compared with the independent
particles in a box if we use the ratio between the two equilibrium

constants, e.gK; andK4+1, which we abbreviate as KB AG, = —RTlog K, (24)
AS =RlogK, (25)
K, [ZX,)?
KB, = = , =12, ..n,—1 . .
K [ZX 42X 4] We now compare the results with selectivity constants as
(19) used, for example, for describing zeolite ion exchange equilib-

ria.b We investigate monovalent ions and activity coefficients
This describes the following equilibria that correspond to the of one, because only this case can be directly compared with
‘internal occupation equilibrium” of the material. the independent particles in a box.
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1.0 This means that we can also calculate the selectivity constants
for monovalent ion exchange of a zeolite.
Xl _
0.8 N, — I+ 111
KSr+1 — KSr r+ 1{ box (29)
r \ Npox — T

This corresponds to eq 23, which means that all consequences
derived from it also apply to the ion exchange equilibrium 26.
Zeolite ion exchange equilibria have often been inspected by
means of the so-called Kielland plbThe reasoning of Jacob
Kielland was that the influence of the activity coefficiemtsy
andyzy in equilibria of the following type

ZM+N=ZN+M K, (30)

can be taken into account by a linear relation:

X — a [N]
log Ka=logaznaM =log 2 M1, - NI (31)
10 Zm3N M] zay
whereayy, azm, ay anday are the activities of the corresponding
0.8 species. [M} and [N}, are the concentrations of M and N in
' the zeolite Z, andC is an empirical constant. This equation has
been later used in the following forff.
A %9 log K;, = log K, + b®©, (32)
[pr] 0.4 whereb is an empirical constank, is the corrected selectivity
constant, an@®; is the equivalent fraction of exchanging species
N
0.2 K, = (NTz2 (33)
M] zay
0.0 . . 7 ; :
o 2 4 6 8 10 12 ,= Nz (34)
. NI + M1,
Figure 2. lllustration of the equilibrium 14 for a system consisting of In the systems discussed in this work, the suny[N][M] z

1h3 species ZX p = 3’ 1, f -, 12. (top) Re|a:ije cogcentratio_ns of is a constant an®; is therefore equal to the exchange degree
the ZX, species and total concentration {X]of bound X species, '\ hich is always defined in an analogous manner as we

normalized by the maximum of [X}], versus the concentration of free . ; o
X. (bottom) Relative concentrations of the ZXpecies =0, 1, ..., explained for the example Ng-M*{Al 15Sh204g, divided by

12) versus the average number of particles in abox the maximum number of places per unit calhy.
X
= 0,=—, 0=06,=1 35
ZY, +X=ZY, X+Y KS, = ] (35)
DX HXZ 2V X T Y KS, We thus write the Kielland equation for the equilibrium 26
ZY, X+ X=2ZY, _X;+Y KS; as follows:
. . log KS=a+ bO, (36)

wherea andb are empirical parameters. The equivalent to the
Kielland plot of the independent particles in a box has the
following form:

ZYX, 4 +X=2ZX, +Y KS (26)

The selectivity constants K@ire defined as follows:

Npox — I +1
[ZY f, ~XALY] log KS,,,, = log KS, — log|" 3 Thox — )] (37)
Ksr = , r=1,2, Moy (27) r \ Npox — T

[ZY nboxf(rfl)X r71] [X]

The derivative of K., with respect ta is obviously not a
It is easy to see that the ratio between two of these selectivity constant, which means that the equivalent 37 to the Kielland
constants can be identified with the equilibrium constants, KB plot is not linear. In Figure 3, we illustrate how log K$

similar to the case in in eq 19. changes as a function ofand we compare this with the linear
function 36 for which the parametessandb have been adjusted
KS, [zY nbox,rXr]z to fit eq 37 as well as possible. We see that the deviation from
= (28) linearity of 37 is small, in the range between 10, < 0.9,

KSi  [2Y nbox—(r—l)xr—l][ZY “box—(r+1)xr+l] where the best experimental data are available. Since the activity
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log(K)

-6 T 1
0.0 0.5
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Figure 3. Plot of the natural log oK versus the equivalent fraction

of exchanging species calculated for the independent particles in a box,

eq 37 (solid) and Kielland plot according to eq 36 with the adjusted
parameters& = —0.476 andb = 0.364 (dotted).

coefficients of the independent particles in a box are equal to

1, it is not justified to use any nonvanishing parametdor

Kunzmann et al.

No,oj = Nooj—1 = (P10 P20 ANN, ;4 (39)

N

Tl

Ny ric1 TP 1ANN i+ Pp,aANN, g —
(pl,r1 + pz,rz)Aner—l,rz,iﬂ (40)

In these equationg,, + Pz, is the probability that boxes
with an occupationrg,r,) vanish by receiving an additional
particle on site 1 or 2p;,,—1An is the probability that boxes
containing (;—1,») particles are transformed to boxes contain-
ing (r1,rz); the interpretation ofpy,,—1An is similar. These
probabilities can be expressed in analogy to eq 7 as follows:

calculating activity coefficients. In the present case, the value the probabilitiesp,,. become

of the parameteb = 0.364 is due to the decrease of entropy

with increasing equivalent fraction of exchanging species (see

Table 1). While 36 is a purely empirical equation with no
theoretical justification, 37 is the result of a well-defined and

simple situation. We therefore suggest that 37 should be used

in further studies as a reference for “ideal behavior” and that it
is better suited as a basis for defining activity coefficients than
the original Kielland equation.

Boxes with Two Different Sites

The sites provided by the unit cell of a microporous material
for an ion, an atom, or a molecule are often not equivalent.

The interaction of the intercalated species at one site can be

An qa(mo - rs)
po,rsAn = !
n mmp ot
(o + gmy) — Z Z(Chrl + Gl
r1=0r,=0 n
foro=1,2andr =r,r, (41)
Using
A= (g + gmyn (42)
0y(M, — 19

Por, = (43)

s

m
A— 2 Z(qlrl + quZ)er,r2

r1=0r,=0

The initial conditions when all boxes are empty, as a function
of particlesn in the sample, of the number of sitam( ny) in
a box, and of the number of unit cellé,; can be written for
the particle occupationg andr; as follows, in analogy to eqs
11 and 12:

NO,O(OvmlvmzvNua = Nuc (44)

stronger than that at another. Such sites can be distinguished

by assigning them different occupation probabilities. We
therefore devise a system consisting\Ngf boxes, each of which
can be filled with up taw,ex particles, as in the previous section.
Now, however, my particle positions have an occupation
probability q; andm, haveq,. The different particle positions
correspond to different sites= 1,2 located in the same box.
The following relations hold:

r]box=ml+m2
1=q,+0q,

Nmax = mlNuc + mZNuc (38)

Each time a particle falls in a box on site the probability
for a next one to hit that box on sitedecreases by . This
means that once site of this box is filled, the probability for
a next particle to hit this site becomes zero.

We assume that a total of= n; + ny particles are already
present in our sampley are the number of particles on site 1
andn, those on site 2. Adding\n = 1 particles to the sample
in a try i causes the number of empty boXeso;—1 to reduce
to No,o; while the number of boxehl, r,,i—1 containing (1, r»)
particles on sites 1 and 2 changeNgQ;,,i, wherer; =0, 1, ...,
my andr, =0, 1, ...,mp. This can be expressed in an analogous
way as we did in eqs 5 and 6

Ny, (O, m,N,) =0 (45)
Generalization to three, four, or more different sites is
cumbersome but straightforward by extending eqs-488
appropriately. It is more useful to discuss the independent
particles in a box with two different sites in detail. We do not
write differential equations as we did for eqs 5 and 6 because
no analytical solution of the problem is known. The occupations
Nr,r((n,my,my,Nye) are known, however, from the numerical
solution of the problem given in the Appendix B as a Mathcad
code that can be translated easily to any other desired¥brm.
This ends the mathematical part of the independent particles
in a box with two different sites and we now explore its
meaning. It is obvious that the systems behavior becomes more
complex with respect to the previous case. A given occupation
probability set §1,02) leads to (. + 1)(m, + 1) different plots
of the type shown in Figure 1. We investigate this for a specific
case where we again consider microcrystals consisting of a
certain number of boxes each of which beays = 12 places.
my = 7 of theses places bear an occupation probalijity=
0.25, and the otham, = 5 places bear one af, = 0.75. We
do not show all 48 situations. The four cases illustrated in Figure
4 are sufficient to explain the variety of situations created by
two different sites. It is not difficult to understand the system
and to derive specific information for any possible situation,
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0 2 4 6 8 10 12 0 2 4 8 8 10 12 Q 2 4 6 8 10 12 0 2 4 [ 8 10 12
I 2 T T T
Figure 4. Particle distributiond;,,(r1 = 0, 1, 2, and 3) for the independent particles in a box with two different sites as a function of the mean
exchange degree Each box consists of a total of 12 sites, out of which seven have a probability 0.25 and five have a probability of 0.75 for being
occupied. Each plot shows the particle distributionrfor= 0, 1, 2, ..., 7 from left to right.

TABLE 2: Distribution of the Particles among the Sites 1 and 2 for an Average Exchange Degree of= 5

02\p1 0 1 2 3 4 5 6 7

0 9.8x 10 0.008 0.031 0.064 0.078 0.057 0.023 0.004

1 0.002 0.013 0.048 0.097 0.118 0.086 0.034 0.006

2 9.2x 104 0.008 0.029 0.059 0.072 0.052 0.021 0.004

3 2.8x 10 0.002 0.009 0.018 0.022 0.016 0.006 0.001

4 4.3x 10°° 3.7x 104 0.001 0.003 0.003 0.002 9310 1.6x 10

5 2.6x 107 2.2x 10° 8.1x 107° 1.6x 10 2.0x 10 14x 10 5.5x 107 9.4x 1078
despite its complexity. We observe as an example indthe simple system lead to a thermodynamic description of the

plot how the unoccupied sites vanish with increasing average following equilibria, relevant in microporous material,
exchange degree= r; + r, and how site 2, which has higher

occupation probability than site 1, is first occupied by only one ZX; + X=ZX4,

particle. However, occupation with two particles starts very

soon, and all boxes with only site 2 occupied vanish rapidly ZXi T ZX 1= 22X,

above an average exchange degree of about 5. These results

can be used for understanding the internal occupation equilib- LY KT X=X T Y

rium 46 of a system with two different sites, 1 and 2, and they

are very useful when studying, e.g., spectroscopic propertiesfor which the equilibrium constants and the change of entropy
of species that depend on site occupation probability. have been calculated. This description has successfully been
. used by us to study the dependency of the electronic spectra of

ZXLpy X205 = ZX1 1111X2 51 (46) activated Ad12-xM",{Al 15Si1204¢] On the exchange degreé®

[ZX1 X2, 1] Our results have been compared with the so-called Kielland
— p1H1"p2— (47) plot, which has been generally accepted to be useful for

Ple2 [ZX1,,X2,,] discussing activities in ion exchange equilibria in zeolites, clay

] ) minerals, and other materials. We have shown, however, that

Since allNr, r,(n,m,Mp,Nyc) are known from the numerical  this choice is quite arbitrary and we propose to substitute it by

solution of egs 39 and 40, all individual equilibrium constants he jndependent particles in boxes equation as a reference for
K12 can be calculated by means of eq 48, and therefore the«geal behavior”.

change of entropy is known, similarly as in egs 24 and 25. The sites provided by the unit cell of a microporous material
N for an ion, an atom, or a molecule are often not equivalent.

K. = Prtlp1 (48) They can be distinguished by assigning different occupation
plp2 N,,l,p2 probabilities. We have therefore generalized the theory for boxes

with unequal sites, and we have illustrated how the fast

A question often encountered concerns the distribution of increasing complexity of the system can be handled for boxes
particles among the different sites for a specified average degreewith two different sites, corresponding to the following internal
of exchanger = ry + r,. This information can be extracted €quilibrium in which X1 and X2 are the same species but
from the results illustrated in Figure 4. We show as an example coordinated to the sites 1 and 2, respectively:
in Figure 5 the results obtained for= 4 and 8 and in Table 2 R
those forr = 5. It is easy to realize that by playing with the ZX1 X250 = ZX1111X205 4
average exchange degree, a number of specific situations can

be generated. This can be used for analyzing experimental data O}Jr re§ults demo.nstrate the gsefulness Of, the indepgndent
and for planing site-specific experiments. particles in boxes with several sites for studying properties of

microporous material as a function of the average exchange
Conclusions degree, an experimentally easy to control parameter that

We have explained the independent particles in a box casetherefore plays an important role in many studies of such
in detail, and we have shown that the results obtained for this material.
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5 dN,
fwoz—fpodn (A5)
47 Using eq 7 forr = 0 leads to
3 In(Ny) = — f° oo Gn=nIn( N..— 1) +In C
: S S S _
? (o) nboxNuc —-n box box' Yuc 0
P2 (AB)
2 This equation can be written as
11 No = Co(nboxNuc - n)nbox (A7)
O We will see later that the integration const&jgtfollows from
0 . AN i , i the initial conditions. To find the solution of A2 we proceed as
0 1 2 3 4 5 6 7 follows. First, we solve it for the special cadésandN,. From
D, —» this, it will be easy to guess the general solutionNprwhich
! can be tested by inserting it into A2. Applying the initial
conditions will then lead to the solution of the problem. For
5 = 1, we obtain
dN N, — 1 n
4 X TN = 2% N (AB)
dn r]boxNuc —-n nboxNuc —n
i dN Ny — 1 n
3 1 box box n
_ + | — C — box
f dn nboxNuc - n’\ll nb0><Nuc —-n O(nboxNuc " (A9)
P2
27 The solution of this equation can be expressed as follows:
N, = G(n)e”™ (A10)
1 -
where
0 T - ' " 7 " N, — 1
0o 1 2 3 4 5 & 7 umn) =— [—= dn=
MNpoxNye = N

P —

Figure 5. Distribution of the particles among the sites 1 and 2 for an
average exchange degree of 4 (upper) and 8 (lower). The values of theg 1
maximum contour are 0.120 (upper) and 0.132 (lower) and the spacings
between the two contours are 0.013 (upper) and 0.015 (lower).

(nbox - 1) |n(nbo><Nuc - n) + Cll (All)

r]box —U
. . . . G(n) = fmco(nbox’\luc —n)™e @ dn
We conclude that the independent particles in boxes with one box Nuc
ore with several sites facilitates the discussion of relevant
observations and the planning of new experiments. It should G(n) =
therefore be considered as a reference system for “ideal site fnboxco(nboxNuc _ n)nbovlef[(nborl) In(oNuc—n)+Cail gy

occupation equilibria” in microporous systems.

Appendix G(n) = nNye,Co f e “dn=(n+ CynyeCoe ™ (A12)
A. Solution of the Independent Particle eqs 9 and 10To Inserting this into eq A10 leads to
solve this problem we write the eqs 9 and 10 as differential
equations Al and A2 with the initial conditions A3 and A4. N, = (n+ C,on, Coe_clle(nbox_l) IN(MpoxNyc—n)+C11
0X
dNO Nl = r~|boxCO(ﬂ + ClO)(nboxNuc - n)(nbox_l) (A13)
an - PoNo (A1) _ _
The solution forN; is found by the same procedure as
dN,
—+pN=p_N_; for ng,=r=1 (A2) n? _
dn o ' ' > N2 = nbox(nbox - 1)C0 E + nClO + CZO (nboxNuc - n)nho>< 2
NO(O’nbowNuc) = Nuc (A3) (A14)
N (0.Mp0,Ny) = 0 (Ad) On the basis of the solutions fddo, N;, and N, it is not

difficult to estimate the general solution filf = Ny(n,Npox,Nuc)
The solution of Al is readily found as follows: to be as follows:
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Numerical Solution of the Independent Particle in a Box with Two Different Sites

Ny  A=(apmi+aymy)Ny
+"2=0
ma

(g 1+q9s )-C

[ 2°2 S 1582
s9=0

1-p2'2)'cflx’2

if ry+r1y)=0

2_1~Cr 1‘r2_1+value>> if [(r 1=0) + (r2¢0>]32
_1~Crl_lyr2+value> if [ (%0) + (r#0) Jm2

_1~Cr1_1,r2+p2r2_l~Cr‘Yr2_1+value) if <rl-r2>>0

SCHEME 1:
Counting the sites and N ot :=Nuc~(m 1+m2> n:=0..
Abbreviation:
Initia_xl condition, Nemply =|for rj€0.m
all sites are empty:
for ry€ 0..my
Cr 1*'2‘—0
Crl,rz‘—NuC if ry
C
Calculat.ion of the Noce = | BN empty
occupation for two
different sites: for ke 0..Nyo
Ce Bk
my
denome= A — Z
s1=0
41
numer 11—
denom
42
numer 24—
denom
for ry€0.m,
pl, 14— (ml— r l)-numer 1
for ry€ 0..my
P2, = <m 2-T 2) ‘numer
for rye0.m
for ry€0..my
valuee (l -pl,
D, 1!‘2‘— value
(P2
(P,
8
Bk+lc—D
B
Rearranging the values M= | for i€ 0.mj
for more convenient use: for r{€0.m
for ne 0..N
MM, | 1‘-[<N oce
Bi"_ MM
B
Number of boxes, number of sites and site preferences: N
nbox! CO ! i
— — Npox—T
Nr(n'nbox'Nu9 - | (nboxNuc n) zcio N
(Npox = 1)! i=0  (r—1)!
(A15)

whereCqo is equal to 1. The validity of A15 can be tested by
inserting it into A2. It is easy to see that the initial conditions
A3 and A4 are fulfilled if

B N
(nbome) fhox
Cp=1

uc
Co

\<i> _1_
ﬂ) ]rl NUC
=100 m =7 my=5 q =075 Go=l-q,
Co=0 for r>0 (Al6)
From this follows
r nrfi nr
dCo——=— (A17)
=0 (r—iy r!

Inserting this in eq A15 leads to the solution expressed in eq
13.

B. Numerical Solutions of The eqs 39-45. The solution
of this problem is illustrated in Scheme 1 as a Mathcad file.
Where possible, the same symbols have been used as in the
text??
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